Order-independent constraint-based causal structure learning
نویسندگان
چکیده
We consider constraint-based methods for causal structure learning, such as the PC-, FCI-, RFCIand CCDalgorithms (Spirtes et al. (2000, 1993), Richardson (1996), Colombo et al. (2012), Claassen et al. (2013)). The first step of all these algorithms consists of the PCalgorithm. This algorithm is known to be order-dependent, in the sense that the output can depend on the order in which the variables are given. This order-dependence is a minor issue in low-dimensional settings. We show, however, that it can be very pronounced in high-dimensional settings, where it can lead to highly variable results. We propose several modifications of the PC-algorithm (and hence also of the other algorithms) that remove part or all of this order-dependence. All proposed modifications are consistent in highdimensional settings under the same conditions as their original counterparts. We compare the PC-, FCI-, and RFCI-algorithms and their modifications in simulation studies and on a yeast gene expression data set. We show that our modifications yield similar performance in low-dimensional settings and improved performance in high-dimensional settings. All software is implemented in the R-package pcalg.
منابع مشابه
یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملConstraint-based Causal Structure Learning when Faithfulness Fails
Constraint-based causal structure learning algorithms rely on the faithfulness property. For faithfulness, all conditional independencies should come from the system’s causal structure. The problem is that even for linear Gaussian models the property is not tenable. In this paper, we identify 4 non-causal properties that generate conditional independencies and investigate whether they can be re...
متن کاملA Statistic Criterion for Reducing Indeterminacy in Linear Causal Modeling
Inferring causal relationships from observational data is still an open challenge in machine learning. State-of-the-art approaches often rely on constraint-based algorithms which detect v-structures in triplets of nodes in order to orient arcs. These algorithms are destined to fail when confronted with completely connected triplets. This paper proposes a criterion to deal with arc orientation a...
متن کاملMarginal Causal Consistency in Constraint-based Causal Learning
Maximal Ancestral Graphs (MAGs) are probabilistic graphical models that can model the distribution and causal properties of a set of variables in the presence of latent confounders. They are closed under marginalization. Invariant pairwise features of a class of Markov equivalent MAGs can be learnt from observational data sets using the FCI algorithm and its variations (such as conservative FCI...
متن کاملJoint Probabilistic Inference of Causal Structure
Causal directed acyclic graphical models (DAGs) are powerful reasoning tools in the study and estimation of cause and effect in scientific and socio-behavioral phenomena. In many domains where the cause and effect structure is unknown, a key challenge in studying causality with DAGs is learning the structure of causal graphs directly from observational data. Traditional approaches to causal str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 15 شماره
صفحات -
تاریخ انتشار 2014